1,480 research outputs found

    Theory of Double-Sided Flux Decorations

    Full text link
    A novel two-sided Bitter decoration technique was recently employed by Yao et al. to study the structure of the magnetic vortex array in high-temperature superconductors. Here we discuss the analysis of such experiments. We show that two-sided decorations can be used to infer {\it quantitative} information about the bulk properties of flux arrays, and discuss how a least squares analysis of the local density differences can be used to bring the two sides into registry. Information about the tilt, compressional and shear moduli of bulk vortex configurations can be extracted from these measurements.Comment: 17 pages, 3 figures not included (to request send email to [email protected]

    Hydrodynamics of liquids of arbitrarily curved flux-lines and vortex loops

    Full text link
    We derive a hydrodynamic model for a liquid of arbitrarily curved flux-lines and vortex loops using the mapping of the vortex liquid onto a liquid of relativistic charged quantum bosons in 2+1 dimensions recently suggested by Tesanovic and by Sudbo and collaborators. The loops in the flux-line system correspond to particle-antiparticle fluctuations in the bosons. We explicitly incorporate the externally applied magnetic field which in the boson model corresponds to a chemical potential associated with the conserved charge density of the bosons. We propose this model as a convenient and physically appealing starting point for studying the properties of the vortex liquid

    Synthesis of simulant ‘lava-like’ fuel containing materials (LFCM) from the Chernobyl reactor Unit 4 meltdown

    Get PDF
    A preliminary investigation of the synthesis and characterization of simulant ‘lava-like’ fuel containing materials (LFCM), as low activity analogues of LFCM produced by the melt down of Chernobyl Unit 4. Simulant materials were synthesized by melting batched reagents in a tube furnace at 1500 °C, under reducing atmosphere with controlled cooling to room temperature, to simulate conditions of lava formation. Characterization using XRD and SEM-EDX identified several crystalline phases including ZrO2, UOx and solid solutions with spherical metal particles encapsulated by a glassy matrix. The UOX and ZrO2 phase morphology was very diverse comprising of fused crystals to dendritic crystallites from the crystallization of uranium initially dissolved in the glass phase. This project aims to develop simulant LFCM to assess the durability of Chernobyl lavas and to determine the rate of dissolution, behavior and evolution of these materials under shelter conditions

    Nonlocal Conductivity in the Vortex-Liquid Regime of a Two-Dimensional Superconductor

    Full text link
    We have simulated the time-dependent Ginzburg-Landau equation with thermal fluctuations, to study the nonlocal dc conductivity of a superconducting film. Having examined points in the phase diagram at a wide range of temperatures and fields below the mean-field upper critical field, we find a portion of the vortex-liquid regime in which the nonlocal ohmic conductivity in real space is negative over a distance several times the spacing between vortices. The effect is suppressed when driven beyond linear response. Earlier work had predicted the existence of such a regime, due to the high viscosity of a strongly-correlated vortex liquid. This behavior is clearly distinguishable from the monotonic spatial fall-off of the conductivity in the higher temperature or field regimes approaching the normal state. The possibilities for experimental study of the nonlocal transport properties are discussed.Comment: 18 pages, revtex, 6 postscript figure

    Interstitials, Vacancies and Dislocations in Flux-Line Lattices: A Theory of Vortex Crystals, Supersolids and Liquids

    Full text link
    We study a three dimensional Abrikosov vortex lattice in the presence of an equilibrium concentration of vacancy, interstitial and dislocation loops. Vacancies and interstitials renormalize the long-wavelength bulk and tilt elastic moduli. Dislocation loops lead to the vanishing of the long-wavelength shear modulus. The coupling to vacancies and interstitials - which are always present in the liquid state - allows dislocations to relax stresses by climbing out of their glide plane. Surprisingly, this mechanism does not yield any further independent renormalization of the tilt and compressional moduli at long wavelengths. The long wavelength properties of the resulting state are formally identical to that of the ``flux-line hexatic'' that is a candidate ``normal'' hexatically ordered vortex liquid state.Comment: 21 RevTeX pgs, 7 eps figures uuencoded; corrected typos, published versio

    Reproducible Analysis of Rat Brain PET Studies Using an Additional [(18)F]NaF Scan and an MR-Based ROI Template

    Get PDF
    Background. An important step in the analysis of positron emission tomography (PET) studies of the brain is the definition of regions of interest (ROI). Image coregistration, ROI analysis, and quantification of brain PET data in small animals can be observer dependent. The purpose of this study was to investigate the feasibility of ROI analysis based on a standard MR template and an additional [(18)F]NaF scan. Methods. [(18)F]NaF scans of 10 Wistar rats were coregistered with a standard MR template by 3 observers and derived transformation matrices were applied to corresponding [(11)C]AF150(S) images. Uptake measures were derived for several brain regions delineated using the MR template. Overall agreement between the 3 observers was assessed by interclass correlation coefficients (ICC) of uptake data. In addition, [(11)C]AF150(S) ROI data were compared with ex vivo biodistribution data. Results. For all brain regions, ICC analysis showed excellent agreement between observers. Reproducibility, estimated by calculation of standard deviation of the between-observer differences, was demonstrated by an average of 17% expressed as coefficient of variation. Uptake of [(11)C]AF150(S) derived from ROI analysis closely matched ex vivo biodistribution data. Conclusions. The proposed method provides a reproducible and tracer-independent method for ROI analysis of rat brain PET data

    Disordered Boson Systems: A Perturbative Study

    Full text link
    A hard-core disordered boson system is mapped onto a quantum spin 1/2 XY-model with transverse random fields. It is then generalized to a system of spins with an arbitrary magnitude S and studied through a 1/S expansion. The first order 1/S expansion corresponds to a spin-wave theory. The effect of weak disorder is studied perturbatively within such a first order 1/S scheme. We compute the reduction of the speed of sound and the life time of the Bloch phonons in the regime of weak disorder. Generalizations of the present study to the strong disordered regime are discussed.Comment: 27 pages, revte

    Interactions, Distribution of Pinning Energies, and Transport in the Bose Glass Phase of Vortices in Superconductors

    Full text link
    We study the ground state and low energy excitations of vortices pinned to columnar defects in superconductors, taking into account the long--range interaction between the fluxons. We consider the ``underfilled'' situation in the Bose glass phase, where each flux line is attached to one of the defects, while some pins remain unoccupied. By exploiting an analogy with disordered semiconductors, we calculate the spatial configurations in the ground state, as well as the distribution of pinning energies, using a zero--temperature Monte Carlo algorithm minimizing the total energy with respect to all possible one--vortex transfers. Intervortex repulsion leads to strong correlations whenever the London penetration depth exceeds the fluxon spacing. A pronounced peak appears in the static structure factor S(q)S(q) for low filling fractions f0.3f \leq 0.3. Interactions lead to a broad Coulomb gap in the distribution of pinning energies g(ϵ)g(\epsilon) near the chemical potential μ\mu, separating the occupied and empty pins. The vanishing of g(ϵ)g(\epsilon) at μ\mu leads to a considerable reduction of variable--range hopping vortex transport by correlated flux line pinning.Comment: 16 pages (twocolumn), revtex, 16 figures not appended, please contact [email protected]

    Persistence and Life Time Distribution in Coarsening Phenomen

    Full text link
    We investigate the life time distribution in one and two dimensional coarsening processes modelled by Ising - Glauber dynamics at zero temperature. We find that the life time distribution obeys a scaling ansatz, asymptotically. An independent life time model where the life times are sampled from a distribution with power law tail is presented, which predicts analytically the qualitative features of the scaling function.Comment: 12 pages; 6 figure

    Can Short-Range Interactions Mediate a Bose Metal Phase in 2D?

    Full text link
    We show here based on a 1-loop scaling analysis that short-range interactions are strongly irrelevant perturbations near the insulator-superconductor (IST) quantum critical point. The lack of any proof that short-range interactions mediate physics which is present only in strong coupling leads us to conclude that short-range interactions are strictly irrelevant near the IST quantum critical point. Hence, we argue that no new physics, such as the formation of a uniform Bose metal phase can arise from an interplay between on-site and nearest-neighbour interactions.Comment: 3 pages, 1 .eps file. SUbmitted to Phys. Rev.
    corecore